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Abstract: This document provides supplementary information for “Correcting Spatial-Spectral 
Crosstalk and Chromatic Aberrations in Broadband Line-Scan Spectral-Domain OCT”. We 
show: (i) the scattering and reflecting OCT signal requires different image metrics to present 
their image quality; (ii) the swarm-intelligence (SI) algorithms are more robust to find the 
global optimum of the image metric than traditionally used gradient-based algorithms, 
especially in the low contrast scenario where the number and location of the image metric is 
unpredictable.

Section I. Factors that degrade the OCT resolution in LS SD-OCT images 
1.1 Virtua interference pinhole effect

In this work, the x-direction is the scanning direction of the LS SD-OCT system, z-direction is 
the light propagation direction, and y-direction is the direction orthogonal to the xz-plane. 
Location (𝑥,𝑦,𝑧) represents the center position of the optical volume under study, and 
(𝑥1,𝑦1,𝑧1) and (𝑥2,𝑦2) denote the coordinates of the imaged sample volume and the camera 
detection plane respectively. 

Considering the light scattered back from the sample, when it reaches the camera detection 
plane, its electrical field can be expressed as:

2 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1( , | , , ) ( , , ) ( , , ) ( , , )det i dE x y x y z h x y z s x x y y z z h x x y y z dx dy dz        (S1)

where ℎ𝑖(𝑥,𝑦,𝑧) and ℎ𝑑(𝑥,𝑦,𝑧) are the coherent point spread functions (cPSFs) of the 
illuminating and detecting optics and 𝑠(𝑥,𝑦,𝑧) is the scattering distribution function of the 
sample. Here, the light rejected by the slit aperture is not taken into consideration since the slit 
is much wider than the beam waist. Note that this formula describes the single scattering regime 
case. 

Since the OCT signal is generated by the interference of the electrical fields backscattered 
from the imaged object and reflected from the reference mirror, the reference electrical field 
acts as a virtual pinhole along the x-direction under the assumption that its spot size on the 
detection plane is the same for all wavelengths. Incorporating the virtual pinhole in the x-
direction and the camera pixel size confinement in the y-direction as 𝑝(𝑥,𝑦,𝑍), where 𝑍 is the 
axial shift of the reference focus from the detection plane, the effective electrical field 
backscattered from the position (𝑥,𝑦,𝑧) is:
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where ⊗  denotes convolution. Under the assumption that the pinhole is infinitely small, i.e., 𝑝
(𝑥,y,𝑍) = 𝛿(𝑥,𝑧 ― 𝑍)𝛿(𝑦), and the illuminating and detecting optical beams are underfilled 
such that the cPSFs are separable ℎ(𝑥,𝑦,𝑧) = ℎ(𝑥,𝑧)ℎ′(𝑦,𝑧), 𝐸𝑒𝑓𝑓

𝑠  can be simplified as:
( , , ) ( , , ) [ ( , ) ( , ) ( , ) ( , )]eff

s i d i dE x y z s x y z h x z h x z Z h y z h y z    (S3)

Here, ℎ𝑖,𝑑 and ℎ′𝑖,𝑑 refer to the cPSFs in x- and y-direction, respectively, considering that the 
beam waists and focal positions can be different in these two transverse directions. Since the 
illuminating beam radius along the y-direction is much broader than that of the detecting (420 𝜇
m vs. 1.5 𝜇m), the effective cPSF of the scattering light can be further simplified as:

( , , ) ( , ) ( , ) ( , )s i d dh x y z h x z h x z Z h y z  (S4)
It is clear from Equation (S4) that the effective detection focal plane in the xz-plane is axially 
shifted due to the reference signal, while it is not affected in the yz-direction. 

The virtual interference pinhole acts as a confocal gate in the x-direction and reduces the 
necessity of deploying physical apertures; however, it results in phase loss if the focal planes 
are miss-aligned. For simplification, we only consider the effective cPSF of the scattering light 
in the xz-plane and assume the illumination and detection cPSFs are Gaussian with the same 
beam waist and focal position. The virtual pinhole's focal plane is shifted axially, leading to a 
shift in the effective detection focal position (Fig. 1B). The coherence transfer function (CTF), 
𝐻𝑖,𝑑(𝑘𝑥,𝑧), which is the Fourier transform of the cPSF, can be represented as:

𝐻𝑖,𝑑(𝑘𝑥,𝑧) =
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It can be seen that when |𝑧| ≫ 𝑍, 𝐻𝑠(𝑘𝑥,𝑧) is irrelevant with the focus separation 𝑍 and its phase 

information, 𝑒―𝑖𝑧𝑘2
𝑥

2𝑘 , is well preserved; however, the completely lost phasor at 𝑧 = Z/2 leads to 
a failure of DAC.

Aligning the illumination, detection, and reference focal planes at the same axial position 
would be ideal such that phase of the OCT signal is phase lossless. However, it is impractical 
to fulfill this requirement for a broadband light source given the fact that the axial achromatic 
aberration is not negligible. Nevertheless, the failure of the DAC to properly compensate the 
monochromatic aberrations is significant only when |𝑍| > 𝑧𝑅 , where 𝑧𝑅 is the Rayleigh range 
(Fig. S1A). The beam size of the refocused cPSF ℎ𝑠(𝑥,𝑧) will not be distorted significantly if 
the separation 𝑍 of the focal planes is less than 𝑧𝑅 for all wavelengths (Fig. S1B). The OCT 
images of a standard USAF 1951 resolution target were collected at different depths with large 
and small focal plane separation 𝑍. A Gaussian filter is digitally applied to the interference 
fringes in the spectral space to reduce the affection of spatial-spectral crosstalk and chromatic 
aberrations, and the effective spectrum is centered at ~800 nm with a bandwidth of 50 nm. For 
each OCT image, sample signal 𝐸𝑠𝐸∗

𝑠(𝑥,𝑦) and interference signal 𝐸𝑟𝐸∗
𝑠(𝑥,𝑦) are separated, 

and the interference signal is corrected to the 5th order using iteration-based DAC to generate 
the aberration-free signal 𝐸𝑟𝐸∗

𝑠 . According to group 7 element 6's local contrast in 𝐸𝑠𝐸∗
𝑠(𝑥,𝑦) 

and 𝐸𝑟𝐸∗
𝑠(𝑥,𝑦), the separation 𝑍 is about 110 𝜇m in Fig. S1A and less than 40 𝜇m in Fig. S1B. 

The difference of corrected resolutions in the x-direction is noticeable: in Fig. S1A3, all group 
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7's vertical bars are blurred at depth -10 𝜇m and 10 𝜇m; while in Fig. S1B3, all elements can 
be clearly resolved.

Fig. S1 DAC's performance is affected by focal planes' separation 𝑍. (A) Log-scale enface 
images of groups 6 and 7 of a positive USAF 1951 target with large 𝑍 at different depths: sample 
signal 𝐸𝑠𝐸∗

𝑠 (top), interference signal 𝐸𝑟𝐸∗
𝑠 (middle), and aberration-corrected interference signal 

𝐸𝑟𝐸∗
𝑠 (bottom). The illuminating, detecting, and reference focal planes are at depths about 40 𝜇

m (yellow arrow), 10 𝜇m (green arrow), and -70 𝜇m (blue arrow), respectively. At depth -10 𝜇m 
and 10 𝜇m, all group 7's vertical bars cannot be resolved by DAC (red box) since the phase 
information is lost. (B) Log-scale enface images of groups 6 and 7 with small 𝑍 at different 
depths: sample signal 𝐸𝑠𝐸∗

𝑠 (top), interference signal 𝐸𝑟𝐸∗
𝑠 (middle), and aberration-corrected 

interference signal 𝐸𝑟𝐸∗
𝑠 (bottom). The illumination, detection, and reference focal planes are at 

depth about 20 𝜇m (yellow arrow), 0 𝜇m (green arrow), and -20 𝜇m (blue arrow), respectively. 
All elements are resolved with DAC in (B3).

Figure S2 shows the measurement of sample light intensity 𝐼𝑠(𝑧) and OCT axial PSF ℎ𝑧(𝑧) 
with two different slit widths. The system’s alignment is the same as in Fig. S1B. A silver 
mirror was used as the sample. The sample light and interference signal were recorded 
separately at the same depth, and each consisted of 100 repeated B-scans. 𝐼𝑠 and ℎ𝑧 were 
averaged according to:
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where 𝑝 is the pixel number along the spectral coordinate, 𝑛 represents the B-scan number, | ⋅ | 
returns the absolute value, and 𝑌0 denotes the center of Gaussian distribution in the y-direction. 
Here, ℎ′𝑧(𝑦,𝑧,𝑛) is the axially registered PSF with sub-pixel resolution; otherwise, the averaged 
PSF is distorted by inevitable mechanical motions. The slit widths were set as 1000 𝜇m and 
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200 𝜇m, both are much larger than the 1/𝑒2 beam diameter (21 𝜇m). Despite there being a 
significant difference in 𝐼𝑠 between the two slit widths, their axial PSFs are close to each other. 
This result confirms that the interference acts as a confocal gate and the physical slit is just 
utilized to block the stray light.

Fig. S2 Sample light intensity 𝐼𝑠 and OCT axial PSF ℎ𝑧 vs. depth with different slit widths. The 
dashed lines represent the intensity 𝐼𝑠 and PSF ℎ𝑧 measured with slit width 1000 𝜇m. The solid 
lines denote the 𝐼𝑠 and ℎ𝑧 measured with slit width 200 𝜇m. The black line shows the fitted 

function ℎ𝑠(𝑥 = 0,𝑧) = ℎ0 1 + 𝑧 ― 𝑧0

𝑧𝑅

2 ―1/4

.

Since the maximum of the 𝑖th axial PSF ℎ𝑖
𝑧 is proportional to the amplitude of the effective 

cPSF, ℎ𝑠(𝑥,𝑧), at depth 𝑧𝑖, the Rayleigh range of the effective cPSF can be calculated by fitting 
𝑧𝑖,max ℎ𝑖

𝑧  with function:
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where the effective cPSF ℎ𝑠(𝑥,𝑧) is assumed to follow the electric field's distribution of a 
Gaussian beam. The power index 1/4 instead of 1/2 comes from the symmetry break of x- and 
y-direction. 𝑧𝑅 is determined as 7.92 𝜇m, corresponding to a 1/𝑒 beam radius of 1.42 𝜇m of 
the effective cPSF.

Section II. Image metric functions 
According to Parseval's theorem, Fourier transform is unitary:

2 2
,| ( , ) | | [ ( , )] |x y x yI x y dxdy FT I x y dk dk  (S8)

Since the DAO only applied a phase mask to the spatial frequency representation: FTx,y[I(x,y)]
→FTx,y[I(x,y)]exp(iϕ(kx,ky)), the intensity integrals of the original and corrected OCT signals 
are the same. Therefore, the enface OCT signal is similar to an isolated system in 
thermodynamics: each pixel is like a particle, and the conserved pixel number and intensity 
integral corresponds to the isolated system exchanging no particle and energy with 
environment, while changing the phase mask corresponds to the system evolution. As stated in 
the second law of thermodynamics, the entropy of an isolated system does not decrease, it is 
natural to use the Shannon entropy defined in equation (5.8) as an image metric. It is rewritten 
here for convenience: Se|{an,i}

= ∑256
m=1 ― pm log pm, where pm is the probability that the 

normalized intensity I(x,y) is in the mth bins. Two other commonly used image metrics in 
aberration correction of OCT signal are: 
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where sgn(x) is the sign function. Sde is so-called 'entropy' or 'Shannon entropy' in the study of 
Synthetic-aperture radar (SAR) [1,2]; however, one should not be confused with the true 
Shannon entropy in information theory. The power index of Sp was set as p = 0.9 in this study.

 The image metrics were tested with two different defocused OCT signals: one was scattered 
from the microspheres’ phantom (Fig. S5A), the other was reflected from the resolution target 
(Fig. S5C). Treduce the influence of phase destruction, spatial-spectral crosstalk, and chromatic 
aberrations, the OCT signals were limited in a single sub-band. Only the two defocusing 
aberration coefficients, a2,0 and a2,2, were considered, and they were determined by grid 
searching of the global valley of S(a2,2,a2,0). The contour plots of the image metrics of the 
microspheres image are shown in Fig. S5B (top). From left to right, the image metrics are Sde, 
Se, and Sp, respectively. The landscapes of the three metrics are similar except that the scales 
are different and Se is noisier. The unusual number of local minima due to the noise in Se might 
be related to the SNR of the signal and the number of bins used and make it challenging to 
apply gradient-based algorithms and SA. The grid searching result via Se is (17.8, 23), which 
is slightly different from (17.4, 22,2) determined by Sde and Sp; although there is no noticeable 
difference between the three refocused images (Fig. S5B, bottom). 

Fig. S5 Correction of the defocused scattering (top) and reflecting (bottom) OCT signals with 
grid search. (A) A typical log-scale enface image of the defocused microspheres. (B) Contour 
plot of the image metric (top) and the corresponding refocused image (bottom) using the 
coordinates of the global valley. From left to right, the three results correspond to Sde, Se, and 
Sp, respectively. (C) A typical log-scale enface image of the defocused resolution target. (D) 
Contour plot of the image metric (top) and the corresponding refocused image (bottom) using 
the coordinates of the global valley. (D1) and (D3) were not fully refocused since the global 
minimums of Sde and Sp are both away from the actual defocusing coefficients.

The metrics' performances are completely different in the case of reflecting signals. The noise 
in Se disappeared (Fig. S5D, middle), and the resolution target image was successfully 
refocused with the valley result (15.8, 19.8). However, both Sde and Sp failed to represent the 
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image quality (Fig. S5D, left and right). The global minimums of these two metrics are located 
at (22.6, 31) and (22.6, 31.4), respectively, whereas the actual defocusing coefficients are 
located at smooth slopes of the two metrics, not even local valleys. From the comparison, we 
can see that the Shannon entropy metric Se can correctly represent the image quality of both 
the scattering and reflecting signal, although the noisy landscape in the scattering case is not 
suitable for some optimization algorithms. On the opposite, Sde and Sp work well only in the 
scattering case, although they are smooth and compatible with all optimization algorithms. 

Section III. Optimization algorithms
We first summarize the five algorithms compared here. Two gradient-based methods are 
standard gradient descent algorithm and adaptive moment estimation (Adam) [3,4], while the 
three SI-based algorithms are accelerated particle swarm intelligence (APSO), firefly algorithm 
(FA), and cuckoo search (CS) [5–7]. As there is only one image data during the optimizing 
process in this study, there is no difference between batch gradient descent and stochastic 
gradient descent (SGD). In this section, we use SGD to refer to the standard gradient descent 
algorithm. SGD updates the parameters in the opposite direction of the metric function's 
gradient:

1 ( )t t ta a S a   
   (S10)

where at refers to the aberration coefficients' vector {aj} at the tth iteration, η is the learning 
rate, and ∇S(a) denotes the metric's gradient. Here, we use j in the subscript of the aberration 
coefficients instead of {n,i} for convenience. In practice, the gradient can be calculated as:

1( ) ( ( ) ( ))
ja t t j tS a S a I S a


   

   (S11)

where ∇aj
 is the partial derivative of the mth element in a, Ij is a vector whose elements are all 

zero with the exception of one at the jth element. SGD's convergence rate is highly dependent 
on the chosen learning rate, and a reasonable learning rate is usually cost function dependent. 
In addition, it lacks the ability to escape from shallow local minima and may even get stuck at 
the saddle points [3]. 

 Adam uses adaptive learning rates that are different for each parameter. The historical 
gradient and its square are recorded by:

1 1 1
2
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where mt and vt are both initialized as zero. The parameter vector at is updated following:
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ˆt t t
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


(S13)

where mt = mt/(1 ― βt
1) and vt = vt/(1 ― βt

2). In practice, Adam can escape from the saddle 
points and some shallow local minima; thus, it has been one of the best overall optimization 
algorithms in machine learning. Nevertheless, Adam cannot guarantee a global minimum. 

 APSO is a variant of standard particle swarm intelligence that uses a group of agents to 
explore the parameters space with stochastic and deterministic components. The update rule of 
APSO is:

( ) ( ) * ( ) ( )
1 ( )k k k t k

t t t ta a g a     
     (S14)

where (k) in the superscript refers to the kth agents, g∗ denotes the historical lowest position, 
and ϵt is a vector of random numbers drawn from a Gaussian distribution. The deterministic 
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update g∗ ― a(k)
t

 guarantees the convergence of the iteration, and its converge rate is 
controlled by β. The stochastic update increases the diversity of the solution searching, and its 
random searching region is controlled by a slowly reducing parameter αθt. The a(k)

t  is 
initialized with a random location drawn from the uniform distribution such that the agents can 
sample across the whole parameters space in a relatively uniform manner. The problem with 
APSO is that the only deterministic component may lead an aggressive converge to the current 
best solution g∗ which can differ from the global best. 

 FA introduces the influence of other agents in the deterministic update, and the parameters 
are updated following:

2
,( ) ( ) ( ) ( ) ( ) ( ) ( )

1 ( ( ) ( )) ( )k lrk k k l l k t k
t t t t t t t

l k
a a H S a S a e a a 




           (S15)

where H(x) is a Heaviside step function, and rk,l is the Cartesian distance of the two agents. The 
agent is attracted by others with lower metric values, and the attractive strength depends on the 
distance of the two agents. The benefit is that the agents can automatically divide into sub-
groups and explore different local minima simultaneously, increasing the chance to find the 
global minimum. 

 The update rule of CS has two phases: a global random walk and a local random walk. The 
global random walk combines stochastic Lévy flights and a deterministic attraction to the global 
best location:

( ) ( ) * ( )
1 ( )k k k

t t t ta a L g a    
    (S16)

where L refers to the step size of the Lévy flights, ϵt is the direction of the Lévy flights drawn 
from the uniform distribution, and α is a scaling factor of the step size. Lévy flights can generate 
both near-field and far-field randomization. The near-field randomization explores the space 
like Gaussian randomization in APSO and FA, although it is biased to the global best location; 
the far-field randomization pushes the agents away from current locations, preventing them 
from getting trapped in local minima. The local random walk is performed with the possibility 
pa:

( ) ( ) ( ) ( )
1 ( ) ( )k k m l

t t a t t ta a sH p a a     
    (S17)

where s and ϵ't are a randomized scalar and vector drawn from the uniform distribution, β 
denotes the step size scaling factor, and a(m)

t  and a(l)
t  are two solutions of other agents that are 

randomly selected. CS employs a prudent update strategy that each agent adopts its update if 
only if the metric function drops; otherwise, the agent keeps its current location and waits for 
the next update. The same user-defined boundary was used for all algorithms to prevent the 
iteration from producing impractical solutions.

 The five algorithms are tested with two scattering microspheres enface images. The two 
enface signals are from the same OCT tomogram but at different depths and have different 
aberration coefficients and SNRs. The broadened microspheres can still be recognized at the 
depth 75 μm away from the focal plane (Fig. S6A1), whereas the microspheres are almost 
overwhelmed by noise at depth 150 μm (Fig. S6A2). Data 1 and data 2 are used to refer to the 
enface images of the two depths in the following discussion. The refocusing coefficients, 
(a2,2,a2,0), are determined with the grid searching method (Fig. S6C), and the corresponding 
refocused images are shown in Fig. S6B. It can be seen that there are much more shallow local 
minima and saddle points in the metric landscape of data 2, even though just in 2 degrees of 
freedom. These local minima and saddle points come from the noise, and it is expected there 
will be more in a higher dimension. 

We compared the performance of the algorithms in low order and high order aberration 
correction. For low order correction, the images were corrected to the 2nd order with 3 degrees 
of freedom; for high order correction, they were corrected to 5th order with 18 degrees of 
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freedom. APSO, FA, and CS employed (15, 15, 15) agents in low order correction and (40 40 
20) agents in high order correction. All algorithms were performed 100 times and the image 
metric convergence curves are shown in Fig. S3. The grey curves show individual optimization 
trials, and the black line represents the mean value. The relative convergence rate and the 
accuracy of the five algorithms are summarized in Table S1. Here, ‘d1n2’ means correcting the 
data 1 (Fig. S6 (A1)) up to the 2nd order. 

Fig. S6 OCT signals from two different depths. (A) Log-scale enface images of the original OCT 
signal. (B) Refocused enface images. (C) Image metric Sp(a2,2,a2,0).

The relative converge rate is inversely proportional to the function evaluation number at which 
the mean convergence curve reaches the critical value set as 99% minimum. If the mean curve 
is above the critical value, it does not have a meaningful relative convergence rate. The 
gradient-based evaluation numbers are equal to the iteration numbers, while the function 
evaluation number per iteration should be multiplied with the iteration number to determine the 
total evaluation number for the SI-based algorithms. The accuracy was calculated as:

( 0.001)accurancy minS S

total

N
N

  (S18)

where NS<(Smin+0.001) is the number of trials whose image metric converged below Smin +
0.001, and Smin denotes image metric's global minimum. As expected, SGD fails in all tests 
(Fig. S3A1-D1) except for low order correction of data 1. Only several trials found the global 
minimum in higher-order correction of data 1 and low order correction of data 2, and no trials 
succeed in high order correction of data 2. Adam, APSO, FA, and CS perform very well in low 
order correction of data 1 (Fig. S3A2-A5). All trials of each algorithm found the global 
minimum. The only difference is their convergence rate. When it comes to high order correction 
of data 1 (Fig. S3B2-B5), FA and CS outperform Adam and APSO in terms of accuracy. The 
aggressive convergence strategy contributes to the low accuracy of APSO. A considerable 
performance difference of the four algorithms appears in correcting data 2, which has lower 
SNR and more local minima. 37% and 17% trials of Adam and FA do not find the global 
minimum in low order correction of data 2, while nearly all trials of APSO and CS succeed 
(Fig. S3C2-C5). As for the high order correction of data 2, only CS maintains an acceptable 
accuracy above 70% (Fig. S3D2-D5).

Table. S1 Relative convergence rate and accuracy of different optimization algorithms.
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Fig. S3 Convergence comparison of different optimization algorithms. (A) Low order aberration 
correction of data 1. (B) High order aberration correction of data 1. (C) Low order aberration 
correction of data 2. (D) High order aberration correction of data 2. Each optimization trial is 
shown in grey, while the mean value is presented in black.

The accuracy defined above shows the percentage of trials that successfully find the global 
minimum but not the accuracy of the aberration coefficients. The first three aberration 
coefficients, (a2,0,a2,1,a2,2), determined by different algorithms and the corresponding final 
image metric values are shown in Fig. S4. The abnormally large uncertainties of the three 
coefficients in all four test scenarios suggest that SGD cannot predict reliable results (Fig. S4A), 
consistent with the convergence curves in Fig. S3 (A1-D1). Adam produces acceptable mean 
values in correcting the aberrations in data 1, although the results in high order correction were 
not precise enough; however, it does not produce trustable results in data 2, whose SNR was 
low (Fig. S4B). The mean values of the aberration coefficients generated by APSO are decent 
in all four test scenarios, whereas the standard deviations in correcting high order aberrations 
of data 1 and data 2 are both relatively large (Fig. S4C). With the same standard, FA produced 
reliable results when correcting the aberrations in data 1(Fig. S4D), and CS generated the most 
precise results in all four cases (Fig. S4E). It only works well for low order aberration correction 
of images with high SNR, APSO is suitable in low order correction scenarios, FA is eligible to 
deal with high SNR image, and CS is the only one that works well in all four cases.
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Fig. S4 Aberration coefficients determined by different optimization algorithms and the 
corresponding image metric values. (A-E) Mean and standard deviation of (a2,0,a2,1,a2,2) 
determined by SGD, Adam, APSO, FA, and CS, respectively. (F) Mean and standard deviation 
of the final image metric values.
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